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General Optimization Problem
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Classes of Optimization Problems

� Unconstrained optimization
� Bound constrained optimization

� Only upper and lower bounds
� Sometimes called “box” constraints

� General nonlinearly constrained optimization
� Equality and inequality constraints
� Usually nonlinear

� Some special case classes
� Linear programming (function and constraints linear)
� Quadratic programming (quadratic function, linear 

constraints)
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Parameter identification example

� Find model parameters, 
satisfying some bounds, for 
which the simulation 
matches the observed 
temperature profiles

� Computing objective 
function requires running 
thermal analysis code
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Optimization formulation

� Objective function 
consists of computing 
the max temperature 
difference over 5 curves

� Each simulation requires 
approximately 7 hours 
on 1 processor

� Uncertainty in both the 
measurements and the 
model parameters
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Some working assumptions

�Objective function is smooth
� Usually true, but simulations can create noisy 

behavior
�Twice continuously differentiable

� Usually true, but difficult to prove
�Constraints are linearly independent

� Users can sometimes overspecify or incorrectly 
guess constraints

�Small dimensional, but expensive objective 
functions
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OPT++ Philosophy

� Problem should be defined in terms the user 
understands
� Do I have second derivatives available? vs. Is my objective 

function twice continuously differentiable?
� Solution methods should be easily interchangeable

� Once the problem is setup, methods should be easy to 
interchange so that the user can compare algorithms

� Common components of methods should be 
interchangeable
� Algorithm developers should be able to re-use common 

components from other algorithms
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Problem Classes in OPT++

� Four major classes of problems available
� NLF0(ndim, fcn, init_fcn, constraint)

• Basic nonlinear function, no derivative information available
� NLF1(ndim, fcn, init_fcn, constraint)

• Nonlinear function, first derivative information available
� FDNLF1(ndim, fcn, init_fcn, constraint)

• Nonlinear function, first derivative information approximated
� NLF2(ndim, fcn, init_fcn, constraint)

• Nonlinear function, first and second derivative information 
available
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Classes of Solvers in OPT++

� Pattern search
� No derivative information required

� Conjugate Gradient
� Derivative information may be available but doesn’t use 

quadratic information
� Newton-type methods

� Algorithm attempts to use/approximate quadratic information
� Newton
� Finite-Difference Newton
� Quasi-Newton
� NIPS
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Quick tour of some of the algorithms
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� Can handle noisy 
functions

� Do not require 
derivative information

� Inherently parallel
� Convergence can be 

painfully slow

Pattern search
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Newton-type Methods

� Fast convergence 
properties

� Good global 
convergence 
properties

� Inherently serial
� Difficulties with 

noisy functions
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NIPS: Nonlinear Interior Point Solver

� Interior point method
� Based on Newton’s method for a particular system of 

equations (perturbed KKT equations, slack variable 
form)

� Can handle general nonlinear constraints
� Can handle strict feasibility
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Constraints

� Constraint types
� BoundConstraint(numconstraints, lower, upper)
� LinearInequality(A, rhs, stdFlag)
� NonLinearInequality(nlprob, rhs, numconstraints, stdFlag)
� LinearEquation(A, rhs)
� NonLinearEquation(nlprob, rhs, numconstraints)

� The whole shebang
� CompoundConstraint(constraints)
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Algorithm Choices Depend on Problem
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Bare bones example: unconstrained 
optimization

void init_rosen(int ndim, ColumnVector& x);
void rosen(int ndim, const ColumnVector& x, double& fx, int& result);

int main() {

int ndim = 2;

FDNLF1 nlp(ndim, rosen, init_rosen);

nlp.initFcn();

OptQNewton objfcn(&nlp);

objfcn.setSearchStrategy(TrustRegion);

objfcn.setMaxFeval(200);

objfcn.setFcnTol(1.e-4);

objfcn.optimize();

}
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Example 2: Constrained optimization
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Constrained optimization (cont.)

int ndim = 3; 
ColumnVector lower(ndim), upper(ndim); 
lower << -4.5 << -4.5 << -5.0;    upper << 4.5 << 4.5 << 5.0 ; 
Constraint c1 = new BoundConstraint(ndim, lower, upper);
// Nonlinear inequality constraint
NLP* chs65 = new NLP(new NLF2(ndim, 1, ineq, hs65, 

init_hs65));
Constraint nleqn = new NonLinearInequality(chs65); 
// Put everything together in one constraint object
CompoundConstraint* constraints = new 

compoundConstraint(nleqn, c1);
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Constrained optimization (cont.)

// Put it all together

NLF2 nips(ndim, hs65, init_hs65, constraints); 

nips.initFcn();

// Define the optimization object

OptNIPS objfcn(&nips);  

// Set tolerances and parameters

objfcn.setFcnTol(1.0e-06); 

objfcn.setMaxIter(150); 

objfcn.setMeritFcn(ArgaezTapia);

objfcn.optimize();
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Parallel Optimization
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Schnabel (1995) Identified Three Levels for 
Introducing Parallelism Into Optimization

�Parallelize evaluation of 
function/gradient/constraints
� May or may not be easy to implement

�Parallelize linear algebra
� Really only useful if the optimization 

problem is large-scale
�Parallelize optimization algorithm at a 

high level
� Multiple function evaluations in parallel



24ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Trust Region with PDS
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� Fast convergence 
properties of Newton 
method

� Good global 
convergence properties 
of trust region approach

� Inherent parallelism of 
PDS

� Ability to handle noisy 
functions
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Comparison of TRPDS with other 
approaches
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Summary

� OPT++ can handle many types of nonlinear 
optimization problems

� The toolkit can be used to compare the effectiveness 
of several algorithms on the same problem easily

� The user needs to provide only functions for the 
objective function and the constraints
� If additional information is available it can be easily 

incorporated
� The code is open source and available at either

� http://www.nersc.gov/~meza/projects/opt++
� http://csmr.ca.sandia.gov/opt++
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